Forum Kategorileri

Kategoriler

SakliMavi Forum

Forum

=> Daha kayıt olmadın mı?



Forum - Pi Sayısı Hakkında

Burdasın:
Forum => Genel Kültür => Pi Sayısı Hakkında

<-Geri

 1 

Devam->


admin
(şimdiye kadar 126 posta)
13.12.2009 16:32 (UTC)[alıntı yap]
Pi Sayısı Hakkında

Pi sayısı, ? = 3.14159..., bir dairenin çevresinin çapına bölümü ile elde edilen sayıdır. Bu oran her daire için aynı değeri aldığından, ? sayısı bir matematiksel sabittir. Sabit ismini Diameter Yunan ? harfinden alır. Zira ? harfi {{Diğer anlamı|Pi}} Yunanca ´´????µ?????´´ yani "çevre" sözcüğünün ilk harfidir. Yunan dili. 3000 yıllık bir geçmişi olan Hint-Avrupa dil ailesine ait bir dildir. Antik Yunanca Klasik Yunan uygarlığının dili olarak kullanılmıştır. Modern Yunanca Antik Yunancadan oldukça farklı olmakla beraber köken olarak ona dayanır. Yunanca, Yunan alfabesi kullanılarak yazılır. Modern Yunanca dünyada, çoğu Yunanistan´da yaşayan yaklaşık 12 milyon kişinin anadilidir. Yunan ? harfinin adı ´´pi´´´dir ve Yunan harfini yazmanın mümkün olmadığı veya sorunlu olduğu durumlarda harfin yerine kullanılır. Ayrıca pi sayısı ´´{{Diğer anlamı|Pi}} Arşimet sabiti´´ (Arşimet sayısı ´´değil´´ ve ´´ Ludolph sayısı´´ olarak da anılır. Eski çağlarda Çin’de de insanlar, pratikte bir dairenin çevre uzunluğunun, bu daire çapının üç mislini aşkın olduğunu kavramışlardır. Ancak kesin sayı hakkında farklı görüşler vardı. Zu Chongzhi’den önce Liu Hui adlı bir Çinli matematikçi, Pi ölçüsünün hesaplanmasında bilimsel bir “kesme yöntemi”ni, yani, Pi’yi daire içerisinde çizilen düzenli çokgenlerin çevre uzunluğuyla dairenin çevre uzunluğuna yakınlaşmaya çalışarak elde etme yöntemini önermiştir. Liu Hui, bu yöntem yoluyla ancak Pi’nin ondalık noktadan sonraki dördüncü rakamına kadar hesaplayabilmiştir. Zu Chongzhi, sonra bu temel üzerinde devamlı araştır

malar ve tekrarlı hesaplamalar yaparak, Pi’yi ondalık noktadan sonraki yedinci rakama kadar çıkarmış, (3.1415926 ve 3.1415927 rakamları arasında) ve üstelik, Pi’nin kesir şeklindeki takribi sayısını da hesaplamıştır. Zu Chongzhi’nin söz konusu neticeleri hangi yönteme dayanarak çıkardığı bilinmemektedir. Eğer Liu Hui’nin “kesme yöntemi”yle Pi elde edilmeye çalışılırsa, daire içerisinde 16 bin düzenli çokgen çizilerek hesaplanmalıdır. Bunun ne kadar zaman gerektireceği, ne kadar yorucu bir iş olacağı bellidir. Daha sonra yabancı matematikçilerin vardıkları sonuç, yaklaşık bin yıl önce yaşamış Zu Chongzhi’nin hesaplayarak elde ettiği Pi’ye denk gelmiştir. Tarihte üstün katkıda bulunmuş Zu Chongzhi’yi anmak için bazı yabancı matematikçiler, Pi olan ?’ya “Zu ölçüsü” adının koyulmasını önerdiler. Babilliler´den beri ortadoğu ve akdeniz uygarlıklarının ? sayısının varlığından haberdar oldukları bilinmektedir. Farklı antik uygarlıklar pi sayısı için farklı sayıları kullanmıştır. Örneğin MÖ 2000 yılı dolaylarında Babilliler ? = 3 1/8, Antik Mısırlılar ise ? = 256/81 yani yaklaşık 3,1605´i kullanmaktaydı. Yine de çok uzunca bir süre ?´nin bir irrasyonel sayı olup olmadığı anlaşılamamıştır. 1761 yılında Johann Heinrich Lambert´in yayımladığı ispatla sabitin irrasyonel bir sayı olduğu kanıtlanmıştır. Günlük kullanımda basitçe 3,1416 olarak ifade edilmesine rağmen gerçek değerini ifade etmek için periyodik olarak tekrar etmeyen sonsuz sayıda basamağa ihtiyaç vardır. İlk 65 basamağa kadar ondalık açılımı şöyledir: 3, 14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 5923 Pi sayısı irrasyonel olmanın ötesinde ayrıca bir aşkın sayıdır da. Ferdinand von Lindemann tarafından 1882 senesinde ispatlanan bu gerçek, Pi´nin katsayıları tam sayı olan bir polinomun kökü olamayacağını ifade eder. Pi sayısı matematikte çember ve yarı çapla doğrudan bağlantılı olmayan durumlarda da karşımıza çıkar. (pi) Sayısı: Kısaca bir dairenin çevresinin çapına oranı, p sayısını verir. İnsanoğlu, aslında çok önemli vazifeleri olan bu sayı üzerinde çok düşünmüştür. Yıllarca tam olarak bir değer bulamamakla beraber, gerçek değerine en yakın sonuçları kullanabilmek için çaba sarfetmişlerdir. p´ nin kronolojik gelişimine baktığımızda günümüzde dahi tam bir sonuç bulunamamıştır. Çeşitli formüller üretilmesine rağmen sadece her seferinde gerçek değere biraz daha yaklaşılmıştır. Arşimet 3.1/7 ile 3.10/71 arasında bir sayı olarak hesapladı. Mısırlılar 3.1605, Babilliler 3.1/8, Batlamyus 3.14166 olarak kullandı. İtalyan Lazzarini 3.1415929, Fibonacci ise 3.141818 ile işlem yapıyordu. 18.yyda 140, 19yyda 500 basamağa kadar hesaplandı. İlk bilgisayarlarla 2035 basamağı hesaplanırken günümüzde milyonlarca basamağa kadar çıkılıyor. İşin ilginç tarafı, hâlâ tam bir sonuç yok. Herhangi bir yerinde devir olsa iş yine kolaylaşacak. Ama henüz öyle bir şeye de rastlanmadı. Şu anda bilinen değerden birkaç basamak: p=3,14159265358979323846264338327950288419716939937510582097494459230781640 628620899862803482534211706798214808651328230664709384460955058223172535940 81284811174502841027.....



Bütün konular: 162
Bütün postalar: 160
Bütün kullanıcılar: 155
Şu anda Online olan (kayıtlı) kullanıcılar: Hiçkimse crying smiley
 
Toplam 53729 ziyaretçi kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol